Machine Learning Fundamentals

Category:
COMPUTER SCIENCE
4.2 out of 5
4.2

Course Description

Understand machine learning’s role in data-driven modeling, prediction, and decision-making.

About this course

Do you want to build systems that learn from experience? Or exploit data to create simple predictive models of the world?

In this course, part of the Data Science MicroMasters program, you will learn a variety of supervised and unsupervised learning algorithms, and the theory behind those algorithms.

Using real-world case studies, you will learn how to classify images, identify salient topics in a corpus of documents, partition people according to personality profiles, and automatically capture the semantic structure of words and use it to categorize documents.

Armed with the knowledge from this course, you will be able to analyze many different types of data and to build descriptive and predictive models.

All programming examples and assignments will be in Python, using Jupyter notebooks.

Enrolled: 20 students
Duration: 80 hours
Level: beginner
Video: 30 hours